

School of Communication & Business Inspiring Creative Innovation

Leadership Development Meeting-13 SM III 2019-2020

DECISION TREE DIAGRAM

Students can understand and know decision tree diagram

Meeting-13 Semester-3/Odd Year: 2019-2020

UNDERSTANDING OF DIAGRAM

- Diagram is a picture to show or explain a data that will be presented.
- Other diagram definition is certain symbols that can be used to explain the facilities, procedures and activities that are normally carried out in a system

TYPES OF DIAGRAMS

a. Line Chart

b. Pie Chart

c. Bar Chart

d. Stem Chart (stem-leaf chart)

e. Line-Grid Diagram

EXAMPLES OF DIAGRAM

EXAMPLES OF DIAGRAM

STEM-LEAF DIAGRAM

LINE-GRID CHART

Scores of Mid Test (UTS) from 36 students are as follows:

44	56	63	65	61	70	74	71	76	71	72	73
75	76	84	83	84	85	85	89	94	91	95	97
47	59	66	68	64	71	75	73	79	71	73	76

If the data is made in Steam-Leaf Chart form, so we can see the tendency and the spread as follow:

Stem								Lea	f							
4	4	7														
5	6	9														
6	1	3	4	5	6	8										
7	0	1	1	1	1	2	3	3	3	4	5	5	6	6	6	9
8	3	4	4	5	5	9										
0	1	Δ	5	7									/////			1111

The following are weight data (in kg) from 36 students chosen randomly

47	44	40	50	63	64	67	56	58	60	63	64
70	60	58	62	58	52	75	41	57	54	55	45
65	69	64	68	63	67	42	66	61	47	44	47

Sort the weight data from smallest to largest

- ✓ After the data is sorted, the smallest and largest weights are obtained respectively 40 and 75.
- ✓ The overall data is 36, so the bottom quartile is in data to (36 + 1) / 4 = 9.25, which is located between the 9th and 10th data.
- Q1 is the average of the 9th and 10th data, namely Q1 = (x9 + x10) / 2 = (47 + 50) / 2 = 48.5.
- While the median lies in the data to (36 + 1) / 2 = 18.5, so Q2 = (x18 + x19) / 2 = (58 + 60) / 2 = 59.
- And the upper quartile lies in the data to 3/4 * (36 + 1) = 27.75 ie Q3 = (x27 + x28) / 2 = (64 + 64) / 2 = 64.

The information that can be obtained is as follows:

- The largest weight (75) is further to Q3 (64) than the smallest weight (40) to Q1 (48.5), means that the data distribution tends to the right.
- > 25% of the data lies between the smallest weight (40) to Q1 (48.5), and 25% of the data lies between Q3 (64) and maximum weight (75).
- The box contains 50% of the data, but the data between Q1 and Q2 is more spread out than between Q2 and Q3.

DECISION TREE DIAGRAM

DECISION TREE DIAGRAM

- A diagram that systematically and comprehensively illustrates the relationship between alternative decisions/ actions with uncertain events (covering each alternative and alternative outcomes that is chosen)
- It is a chronological sequence about what conditions might occur for each alternative decision
- Aims to facilitate the drawing of decisions that is made step by step

DECISION DIAGRAM NOTATION

NEED TO BE DIFFERENT BETWEEN:

- > When one of the alternatives available is chosen we have control in acting (we have the power to choose)
- When the occurrence of uncertain events that will determine the results and alternatives (we can't control it)

NOTATION USED

ALTERNATIVE/ OPTIONS NODE/ SYMBOL

UNCERTAINTY EVENT NODE/ SYMBOL

DECISION SITUATION

Symbol **1. ALTERNATIVE** 2. UNCERTAINTY **NEED DECISION** DIAGRAM

EXAMPLE

Lottery games

Try to describe the alternative/ option model using the decision node

Iternative Node (Choice	
PLAY LOTTERY GAME	
Coin GAME	
PLAY LOTTERY GAME	
Cube GAME	
NOT PLAY GAME	

Uncertainty Event Node

Uncertainty Node

UNCERTAINTY EVEN

Uncertainty Node

DECISION SITUATION

- ➤ Decision situation is so complex → It consist of a collection of alternatives, where in each alternative there are uncertain conditions
- ➢ It needs to be described in an alternative and comprehensive manner which is a chronological sequence about what conditions might occur for each alternative decision → called Decision Diagram

EXAMPLE

- > Someone went to the night market and saw two lottery booths.
- Stand I: Lottery throws coin
- Stand II: Lottery throws cube/ dice
- > Someone interested in trying the lottery game, but hesitated

CHOICE OF EVENTS

For example, to take part in the two types of lotteries, each must pay Rp 100, - while the prizes that may be received from both games are as follows:

- If you win Coin : prize is Rp 150, -
- > If you win Cube: price is Rp. 400, -

Which game to choose (Coin or Cube/ Dice) ??

Solution:

- ✓ Possibility of Coin prizes = (1/2) x Rp 150 = Rp 75
- ✓ Possibility of Dice prizes = (1/6) x Rp 400 = Rp 66.66

✓ So, Choose to play COIN

DECISION TREE DIAGRAM

Example 2:

A company will decide to buy raw materials **now** or **tomorrow**. Each action gives a different result. If you buy now, the material price per unit is **Rp**. **14,000**. If you will buy it tomorrow there are two possibilities that occur, the price drops to **Rp**. **10,000** or **up to Rp**. **20,000** with a **50% chance** of each. Draw the decision tree

What will you choose, buy now or tomorrow???

DECISION TREE DIAGRAM

DECISION TREE DIAGRAM (CONT')

What will you choose, buy now or tomorrow???

- EV (Buy now) = Rp. 14.000
- EV (Buy tomorrow) = (50% x Rp. 10.000) + (50% x Rp. 20.000) = Rp. 15.000

Choice → BUY NOW

