Leadership Development Meeting-13 SM III 2019-2020

DECISION TREE DIAGRAM

Students can understand and know decision tree diagram

Meeting-13 Semester-3/Odd
Year: 2019-2020

UNDERSTANDING OF DIAGRAM

> Diagram is a picture to show or explain a data that will be presented.
> Other diagram definition is certain symbols that can be used to explain the facilities, procedures and activities that are normally carried out in a system

TYPES OF DIAGRAMS

a. Line Chart
b. Pie Chart
c. Bar Chart
d. Stem Chart (stem-leaf chart)
e. Line-Grid Diagram

EXAMPLES OF DIAGRAM

LINE CHART

PIE CHART

BAR CHART

EXAMPLES OF DIAGRAM

Stem	Leaf			
1	0	5	6	6

STEM-LEAF DIAGRAM

EXAMPLE: IMPLEMENTATION OF STEAM-LEAF CHART

Scores of Mid Test (UTS) from 36 students are as follows:

| 44 | 56 | 63 | 65 | 61 | 70 | 74 | 71 | 76 | 71 | 72 | 73 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 75 | 76 | 84 | 83 | 84 | 85 | 85 | 89 | 94 | 91 | 95 | 97 |
| 47 | 59 | 66 | 68 | 64 | 71 | 75 | 73 | 79 | 71 | 73 | 76 |

If the data is made in Steam-Leaf Chart form, so we can see the tendency and the spread as follow:

The following are weight data (in kg) from 36 students chosen randomly

47	44	40	50	63	64	67	56	58	60	63
70	60	58	62	58	52	75	41	57	54	55
70	45									
65	69	64	68	63	67	42	66	61	47	44

| 40 | 41 | 42 | 44 | 44 | 45 | 47 | 47 | 47 | 50 | 52 | 54 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 55 | 56 | 57 | 58 | 58 | 58 | 60 | 60 | 61 | 62 | 63 | 63 |
| 63 | 64 | 64 | 64 | 65 | 66 | 67 | 67 | 68 | 69 | 70 | 75 |

\checkmark After the data is sorted, the smallest and largest weights are obtained respectively 40 and 75 .
\checkmark The overall data is 36 , so the bottom quartile is in data to $(36+1) / 4=9.25$, which is located between the 9th and 10th data.
\checkmark Q1 is the average of the 9th and 10th data, namely Q1 $=(x 9+x 10) / 2=(47+$ 50) $/ 2=48.5$.
\checkmark While the median lies in the data to $(36+1) / 2=18.5$, so Q2 $=(x 18+x 19) / 2$ $=(58+60) / 2=59$.
\checkmark And the upper quartile lies in the data to $3 / 4$ * $(36+1)=27.75$ ie Q3 $=(x 27$ x28) $/ 2=(64+64) / 2=64$.

The information that can be obtained is as follows:
$>$ The largest weight (75) is further to Q3 (64) than the smallest weight (40) to Q1 (48.5), means that the data distribution tends to the right.
$>25 \%$ of the data lies between the smallest weight (40) to Q1 (48.5), and 25% of the data lies between Q3 (64) and maximum weight (75).
\rightarrow The box contains 50\% of the data, but the data between Q1 and Q2 is more spread out than between Q2 and Q3.

DECISION TREE DIAGRAM

DECISION TREE DIAGRAM

> A diagram that systematically and comprehensively illustrates the relationship between alternative decisions/ actions with uncertain events (covering each alternative and alternative outcomes that is chosen)
> It is a chronological sequence about what conditions might occur for each alternative decision
> Aims to facilitate the drawing of decisions that is made step by step

DECISION DIAGRAM NOTATION

NEED TO BE DIFFERENT BETWEEN:
> When one of the alternatives available is chosen we have control in acting (we have the power to choose)
> When the occurrence of uncertain events that will determine the results and alternatives (we can't control it)

University

NOTATION USED

ALTERNATIVE/ OPTIONS NODE/ SYMBOL

UNCERTAINTY EVENT NODE/ SYMBOL

DECISION SITUATION

EXAMPLE

Lottery games

There two games:

1) Coin Games
2) Cube Games

Try to describe the alternative/ option model using the decision node

Alternative Node (Choice)

Uncertainty Event Node

DRAW UNCERTAINTY EVENT NODE

Uncertainty Node

UNCERTAINTY EVEN

Uncertainty Node

UNCERTAINTY EVEN

DECISION SITUATION

> Decision situation is so complex \rightarrow It consist of a collection of alternatives, where in each alternative there are uncertain conditions
> It needs to be described in an alternative and comprehensive manner which is a chronological sequence about what conditions might occur for each alternative decision \rightarrow called Decision Diagram

Decision Node -> where we have control in acting

Event Fork (Uncertainty event node) \rightarrow where we have no control in acting

EXAMPLE

> Someone went to the night market and saw two lottery booths.
> Stand I: Lottery throws coin
> Stand II: Lottery throws cube/ dice
> Someone interested in trying the lottery game, but hesitated

Example 1:

CHOICE OF EVENTS

For example, to take part in the two types of lotteries, each must pay Rp 100, - while the prizes that may be received from both games are as follows:
> If you win Coin : prize is Rp 150, -
> If you win Cube: price is Rp. 400, -

Which game to choose (Coin or Cube/ Dice) ??

Solution:

\checkmark Possibility of Coin prizes $=(1 / 2) \times R p 150=R p 75$
\checkmark Possibility of Dice prizes $=(1 / 6) \times$ Rp $400=$ Rp 66.66
\checkmark So, Choose to play COIN

DECISION TREE DIAGRAM

Example 2:

A company will decide to buy raw materials now or tomorrow. Each action gives a different result. If you buy now, the material price per unit is Rp. 14,000 . If you will buy it tomorrow there are two possibilities that occur, the price drops to Rp. 10,000 or up to Rp. 20,000 with a 50% chance of each. Draw the decision tree

What will you choose, buy now or tomorrow???

DECISION TREE DIAGRAM

Buy now

DECISION TREE DIAGRAM (CONT')

What will you choose, buy now or tomorrow???

EV (Buy now) = Rp. 14.000
EV (Buy tomorrow) $=(50 \% \times$ Rp. 10.000 $)+(50 \% \times$ Rp. 20.000 $)$
$=$ Rp. 15.000

Choice \rightarrow BUY NOW

Telkom
 University

